Correction of Wavefront Aberration and Communication using Aperture Synthesis

R. J. Eastwood*, A. M. Johnson, C. Kölper, A. H. Greenaway
School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh, EH14 4AS.
Background

- Interferogram formed by aperture array
 - Aperture pairs, e.g. \((i,k)\), generate fringes
 - Fringe frequency proportional to spacing between apertures \((i,k)\)
- By van Cittert-Zernike theorem, fringe properties give information about an object in the frequency domain
 - Aperture spacings sample object’s complex frequency representation
- Aberrations affect aperture phases
 - Sampling \(\Rightarrow\) spacing and object phases added
 - Resultant appears as aberrated object information
- Correction of aperture phases sought
 - Phase closure
 - Redundant Spacings Calibration (RSC)
Outline

• Two methodologies using principles of RSC
 – Calibration/correction aperture phase
 • Regulator control
 • Image sharpness criterion
 – Direct identification of aperture and object phases
 • Object reconstruction
 – Both methods applicable to AO

• Free Space Optical Communications (FSOC)
 – Thin screen ‘atmosphere’ modelling
 • Intensity function characteristics for optimising collector arrays
 – Using 2nd phase screen
• Active phasing of apertures corrects wavefront curvature by altering ‘effective’ aperture phases
 – e.g. 4 aperture array
 \[\phi_i = \bar{\phi}_i - \hat{\phi}_i \quad i = 1, 2, \ldots N \]
 – \(\bar{\phi}_i \) = true aberration phase
 – \(\hat{\phi}_i \) = estimated correction phase

• Aperture spacings sampling the same spatial frequencies \(\Rightarrow \) same effective phase difference
 – Results in \(\leq (N - 3) \) independent ‘redundant’ conditions which must be satisfied.
 • Depends on array configuration
 – If this fails to hold (aberration), auto-correlation magnitude \(\Rightarrow \) image sharpness is reduced
• Further 3 a priori conditions required for unique solution
 – Constraining two estimated phase differences to zero imposes a tilt plane on OTF phase \(\Rightarrow \) image steering
 \[
 \hat{\phi}_i - \hat{\phi}_k = 0 \quad \hat{\phi}_l - \hat{\phi}_m = 0
 \]
 • Two phase differences must be on nonparallel spacings
 – Apply arbitrary offset to a single estimated phase
 – \(N \)-square system of equations in the estimated aperture phases formed from these conditions - example
 \[
 \begin{align*}
 \hat{\phi}_1 &= 0 \\
 \hat{\phi}_1 - \hat{\phi}_2 &= 0 \\
 \hat{\phi}_1 - \hat{\phi}_3 &= 0 \\
 \hat{\phi}_1 - \hat{\phi}_2 - \hat{\phi}_3 + \hat{\phi}_4 &= \bar{\phi}_1 - \bar{\phi}_2 - \bar{\phi}_3 + \bar{\phi}_4
 \end{align*}
 \]
 • All coefficient are integers; constants and variables are mod \(2p \)
 • Determinant of this system has great significance for the solution
• When redundant conditions met, auto-correlation magnitude maximised
 – Parseval’s theorem implies image sharpness can be used as evaluation criterion
• If apertures are uniformly illuminated, the sharpness optimisation surface is a \(\cos^2(\cdot) \) bowl in mod \(2p \subset \mathbb{R}^N \).
 – Maximum can be located in a single step
• If untrue, surface is no longer a simple bowl
 – Unknown aperture illumination \(\Rightarrow \) unknown surface
 – Should remain monotone increasing towards a single maximum
 – Iterative solution available
An interferogram is formed by the aperture array
- Each fringe set generated by each aperture pair e.g. \((i,k)\)
- Fringe frequency \(\propto\) spacing between apertures
- Phase and visibility measured by taking Fourier transform

Phase relations of each fringe set/aperture pair can be written as

\[
m_{ik} = \theta_{ik} + \phi_i - \phi_k
\]

and formed into a system of equations rank deficient by \(N\).

Aperture spacings sampling the same spatial frequencies \(\Rightarrow\) same object phase observed
- \((N - 3)\) independent ‘redundant’ conditions necessary for system to be made full rank
 - Array design must satisfy this condition
• Remaining rank deficiency of 3 addressed by a priori object independent information
 - Two a.p. conditions will apply a tilt to the object phases
 • Mislocates object reconstruction, but only morphology important.
 - Final condition sets a reference level for aperture phases.
• Row operations can be performed on resulting matrix to make the system square
 – Zero valued equations removed
 – Corresponding matrix D-block is N-square and identical to matrix used in image sharpness earlier \Rightarrow same determinant

• Aperture phase estimates depend only on measured phase values \Rightarrow calculated independent of object phases

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
1 & -1 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
\phi_1 \\
\phi_2 \\
\phi_3 \\
\phi_4
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
\mathit{m}_{34} - \mathit{m}_{12} - \mathit{m}_{13} + \mathit{m}_{24}
\end{bmatrix}
\]

– Object phases θ_{ik} then calculable to give object reconstruction
Modulo 2π Arithmetic

- Modulo 2ρ nature of phases causes a problem with both methods of correction
- In terms of image sharpness
 - Triangularising the matrix reveals it’s determinant
 - All values will be integers
 - Example here for 4-aperture parallelogram

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
2 & -2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
\hat{\phi}_1 \\
\hat{\phi}_2 \\
\hat{\phi}_3 \\
\hat{\phi}_4
\end{bmatrix}
= \begin{bmatrix}
0 \\
\phi_1 - \phi_2 - \phi_3 + \phi_4 \\
0 \\
0
\end{bmatrix}
\]

\[
\det \begin{bmatrix}
1 & 0 & 0 & 0 \\
2 & -2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1
\end{bmatrix} = -2
\]

- Appearance of any number ± 1 on the leading diagonal means multiple solutions exist, e.g. with a 2

\[
\phi_1 - \phi_3 + \phi_2 = \phi_2 - \phi_4 - \phi_2
\]
Modulo 2π Arithmetic

- With phase identification
 - D-block identical to the matrix constructed in the image sharpness method
 - Independent system for aperture phases
 - Solving yields the form
 $$\phi_i = \frac{\sum \overline{m}_{lm}}{\det D} = \left(\sum m_{lm} + n2\pi\right) / \det D$$
 - Result may be ambiguous by multiples of π

- Low determinant (e.g. ± 1) associated with poorer system conditioning
 - Generally
 $$\kappa(A) = \|A^{-1}\| \|A\| = \|\text{adj } A\| \|A\| / \det A$$
RSC Demonstrations

- Image sharpness

- Phase identification
 - Correction of aberrated PSF – note shift due to tilt.
Lucky Imaging

- Filled aperture case
 - Low aberration variance across an aperture sought, but small probability
 - Low variance \Rightarrow Strehl ratio, $S \sim 1$ \Rightarrow relatively undistorted images.
 - Density function of S calculable using Marechal approximation (subject to assumptions).

$$S \approx e^{-\sigma_\phi^2}$$

- Many snapshots necessary to find a ‘lucky’ few.
 - Depends on size of telescope relative to correlation length
 - Image sharpness criterion allows automatic search.
Lucky Imaging

- Synthetic aperture case
 - Aperture array takes N samples of the wavefront
 - Aperture size influences complexity of phase modes passed
 - δ-function samples only piston
 - Real apertures see degrees of tilt and higher modes
 - Typically tilt is the highest significant order
 - Probability of lucky snapshot depends on N
 - Joint density function of samples
 - Sufficient frequency content sampled \Rightarrow smaller N, higher probability of being lucky
 - Image sharpness solution must be met by the samples
 - Piston only array with redundancies \Rightarrow RSC solution
 - Tilt case more complicated – less chance of being ‘phased’
- L.I. analogous to Free Space Optical Communications
 - Array designs for imaging: low probability of lucky snapshot
 - FSOC aims to optimise array configuration to increase probability
Communications

• Background
 – Free Space Optical Communications using lasers
 – Characteristics of irradiance field vary with time and propagation distance
 • Caustic and speckle formation in the intensity function
 – Large collector required for optimum signal continuity
 – Investigating use of arrays of smaller collectors
 • Airborne platforms requirements
 • Understanding of intensity properties sought
 • Different at different propagation distances
• Theoretical Investigation
 – Analytical approach
 • Based on propagation theory
 • Calculations accurate but unnecessarily unwieldy
 – Phenomenological approach
 • Scattering centres in source field
 • Each point in the target field results from a finite complex summation
 • Probabilistic treatment of scattering centres modelled using ‘bunching’ statistics
 • Closed form expressions for point statistics, e.g. K-distribution

\[\sum \alpha_i e^{j\psi_i} \]
Communications

- Laboratory Experiments
 - Phase functions generated in ±1 orders of detour phase distorted diffraction grating (DDG)
 - Capability
 - Analogue computation of intensity function at almost arbitrary propagation distances by axial positioning of lens L3
 - Limitations
 - Phase screen thin and static
Communications

• Computer Simulations
 – Propagation by angular spectrum of plane waves
 – Capabilities
 • Set of phase functions pseudo-denumerable
 • Dynamic phase functions
 • Ensemble simulations
 – Limitations
 • Thin screen condition remains
 • Single wavelength and limited propagation distance

• Modelling Goals
 – Inductive validation of experimental and computer simulation
 – Validation and qualification of theory
 • Intensity point and spatial statistics
 • Use of theory for FSOC array optimisation
• Validation of lab/computer simulation
 – Left: experimental
 – Right: simulation

Communications

K-distribution
(near field)

Negative Exponential
(far field)
2nd Phase Screen

- Modelling propagation through an inhomogeneous medium using a second phase screen
 - OASLM generated phase function propagated onto DDG
 - Up to 1? phase change

- No single phase-only screen can model multiple phase screen propagation
- Allows anisoplanatism to be modelled
- Moving phase patterns possible
2nd Phase Screen

- Intensity statistics relevant to FSOC particularly interesting
 - Rate of emergence and influence of regions distinguishable by intensity function characteristics
 - Focussing/caustics – near field
 - Speckle – far field
 - Influence of the first screen on the second

- Amplitude distribution of the first ‘samples’ regions of the second

- Intensity function due to both is naïve of some regions in the second
Array Design

• Imaging
 – Spatial frequency coverage matching object content important
 – Spacings must include sufficient redundancy for RSC solutions
 • Designs must allow unit determinant
 – Aperture sizes to limit wavefront modes passed

• Communications
 – Array configuration must be optimised to maximise probability of at least one aperture seeing high intensity
 • Intensity characteristics depend on atmosphere and propagation distance
 – Platform limits aperture sizes
For the latest results and news from the Heriot-Watt Waves and Fields Group, copies of all our conference presentations and (where copyright allows) PDF’s of our publications please visit:

waf.eps.hw.ac.uk

r.j.eastwood@hw.ac.uk
Acknowledgements

Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA8655-05-1-3050. The U.S. government is authorised to reproduce and distribute reprints for government purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government.