Pupil Replication

Frank Spaan Alan Greenaway
Erwan Prot Vincent Mourai
PREDRIS

• Pupil Replication for Extreme Dynamic Range Imaging Spectroscopy
• Start: 1 April 2005
• Two years, funded by PPARC
• Publication: Pupil Replication for Exo-Planet Imaging; ApJL, 10 January 2005 (referenced in Nature).
• This presentation: includes new unpublished results.
Overview

• Introduction to Pupil Replication
• Characterization and analysis
• Error Assessment
• Experimental proof of principle
• Simulation of a Coronagraph
• Comparison with Hyper Telescope principle
Context

• Exoplanet indirect detection since 1995
• ESA Cosmic Vision 2020 (April 2005):
 – fundamental physics
 – cosmology
 – solar system
 – planetary formation, life, exoplanets
 – => direct detection of exoplanets
 – => proposals due early 2007
Numbers

- Dynamic range starflux / planetflux:
 - 10^{10} (visual, reflected), 10^6 (infrared, thermal)

- A planet at 1 AU around a star at 20 pc seen with 3 m telescope
 - at 36 λ/d at 600 nm (stardisk => 0.2 λ/d)
 - at 2 λ/d at 10 micron
 - flux: one hour, V-band, efficiency 50% =>
 - ~500 photons (planet around 0 magnitude star)
 - ~.05 photons (planet around 10 magnitude star)
Star flux problem

- Flux from host star dominates exoplanet:
- Techniques to suppress scattered host flux:
 - coronography
 - pupil apodisation
 - interferometry

Diffraction limited PSF,
x-axis in λ/d
Inner Working Angle

- Inner working angle (IWA): the minimum angular distance from the star at which a planet can be detected.
- All techniques need image-plane masks
 - mask size is typically several λ/D
 - side-lobe suppression often increases star image
 - increasing IWA makes earth-like detection harder
- \Rightarrow decrease size of star image
 \Rightarrow pupil replication
Pupil Replication with Apodisation

energy (normalised)

angle (\lambda / D)

energy (normalised)

angle (\lambda / D)
Pupil Replication

- Axial wavefront is continuous (blue), like larger telescope.
- Non-axial wavefront is discontinuous (red), and appears like a blazed grating.
- Etendue is preserved (pupil area * solid view angle)
Expected Results

- Consider 3-fold replication in 1-d
- Axial pupil wavefront is 3x wider and 3x fainter
- Image of unresolved axial star is 3x narrower and 3x brighter
- Sidelobes are 3x fainter
- Image stop to remove star flux can be smaller
Expected Limits

- Violation of homothetic mapping
 - position and orientation of the replicated images is not an exact scaled copy of the unreplicated image

- => Non-isoplanatic imaging
 - PSF dependent on the viewing direction.

- => Requirement:
 - Maximum angular diameter of star + telescope pointing error < some limit: θ
Example

- General criterion: max wavefront error < $\lambda/4$.
 - => For N-fold replication of aperture diameter D and at wavelength λ:

- Example:
 - 2.5m diameter pupil
 - 800nm wavelength
 - 3-fold pupil replication
 - $\theta < 5$ mas

- At angles smaller than θ the image quality should be ‘good’ (includes pointing error).

$$\theta < \frac{\lambda}{4D(N-1)}$$
Simulation

- Broken line is un-replicated image (diffraction limited)
- Solid line is replicated image
- Replicated image is modulated by un-replicated image, as expected

y: log(int) x: mas

16 May 2005 www.phy.hw.ac.uk/~phyhic
Broadband

- Single pupil, 1000 nm (black)
- 3x Replicated pupil
 - 1000 nm (red)
 - 872 nm (green)
 - 760 nm (blue)
Analysis (1)

in 1 dimension, plane wave on axis, hard edged pupil:

\[
\text{wave + pupil:} \quad \text{imaged:}
\]

\[
\sin(x)/x = \text{sinc}(x) \quad \text{sinc}(x) (1+2\cos(x))
\]
Analysis (2)

- Input wave at angle α, $d =$ pupil diameter
- $A =$ amplitude constant

\[
wave(x) = Ae^{\frac{2\pi(x-\sin(\alpha))/\lambda}{\lambda}}
\]

- Amplitude of imaged plane wave $= T$

\[
T = A \text{sinc} \left(2d \frac{\pi(x - \sin(\alpha))/\lambda}{\lambda} \right)
\]

- PSF $= |T|^2$
Analysis (3)

• Three replications:
 – single pupil convolved with 3 delta functions
 – Fourier(cosine) = 2 delta functions
 – => sinc multiplied in Fourier domain (image) with $1 + 2\cos(x)$

$T = A(1 + 2\cos(2d\pi x/\lambda))\text{sinc}(d\pi(x - \sin(\alpha))/\lambda)$

– Note: Cos() is not dependent on angle
Two dimensions

- Square pupil (seamless replication) then: 2-D amplitude T

$$T = T_x T_y$$

- T for two replications 1 and 2
 - 1 is on axis, 2 is adjacent

$$T = T_{x1} T_{y1} + T_{x2} T_{y2}$$

- errors imposed on 2
Errors

• Pupil 1: \(T_{1x} \) and \(T_{1y} \) are sinc functions
• Pupil 2 has errors in x (and y) direction:
 – shift \(s \) (and shear \(h \)):
 – piston \(p \)
 – tilt \(f \) (and tip \(g \))
 – \(T_{2x} \) (and similar for \(T_{2y} \)):

\[
Ae^{i2\pi \left(p + \frac{x}{\lambda}(d+s)\right)} \text{sinc} \left(d\pi \left(\frac{x - \sin (\alpha)}{\lambda} - f\right)\right)
\]
Evaluation

• 2-D analyses; horizontal crosssection
• If PSF(no error) - PSF(with error) < 10^{-10}
 – example: shift = d 10^{-5} => 1 micron for 1 cm pupil
 – difference image =>

![Graph showing 10log of normalised intensity vs. off-axis angle (λ/d)](image)
Examples

• Similar results below 10^{-10} for
 – shear = $10^{-5} \, d$; piston = $10^{-6} \, \lambda$; tip = $10^{-5} \, \lambda/d$; tilt = $10^{-5} \, \lambda/d$; jitter = $10^{-6} \, \lambda/d$

• No apodisation or star stop applied.

• Is this peculiar to PR ? =>
 – Error sensitivity assessed this way is for single pupil of the same order of magnitude.
Software Simulations

- 2-D; horizontal crosssections shown
- Simulations of errors due to
 - shift, shear, piston, tip, tilt, jitter
 - agree with analysis within 10^{-14}
- Further simulations:
 - Rotation error, (de-)magnification error,
 random amplitude errors, random phase errors.
 - Extended sources
Simulation: Procedure

- Setup: two square pupils like in analysis
 - wave - pupil - errors - FT - grating - FT\(^{-1}\) - pupil
 - apodisation - FT - star stop - sampling correction - modulus\(^2\) - store
 => this for each point source and wavelength and sum the results
 - Adapt for each wavelength: size of pupils, of apodisation, of star stop, of grating.
 - NB: maximum # pixels limited; sampling correction important; accuracy \(~10^{-14}\)
Example

- Rotation error, max = 21 degrees (magenta), and no error (black), diagonal crosssection.

- Similar results for (de-)magnification error.
- Random errors addressed later.
Extended source

- Simulation using 500 point sources in broadband (8 wavelengths), source = 5λ/d
- The cosine term marks the profile (?)
 - black: single pupil
 - red: 3 replications
 - equal normalisation
- Important when star > λ/2d
 (sun at 20 pc with 9 m telescope at 600 nm)
Half-time

• So far:
 – Pupil Replication as such
 – Analysis, error behaviour

• To come:
 – Experiment
 – Coronagraph
 – Hyper telescope?
Experiment

- A first experiment to verify principle
- Interferometer beam:
 - 2 coherent beams
 - Monochromatic
 - Circular pupils with Gaussian beams
- Effect in one dimension only

Adjust shear
PSF, pupils: 50% overlap

simulation

experiment

16 May 2005 www.phy.hw.ac.uk/~phyhic

H:\Work\Education\Erwan\50% OVERLAPPING\PSF.bmp

H:\Work\Education\Erwan\50% OVERLAPPING\CPSF.bmp
Cross-sections

Blue: simulation, unreplicated
Red: simulation, replicated
Black: experimental
PSFs, pupils: no overlap

simulation

experiment

16 May 2005 www.phy.hw.ac.uk/~phyhic
Cross-sections

Blue: simulation, unreplicated

Red: simulation, replicated

Black: experimental
Replication

- Use 1 beamsplitter and mirrors

- Equal:
 - # reflections in each arm
 - polarisation
 - optical path length

- Adjust last prism to vary replica separation
 => no shift error

- Can be cascaded
- Can be monolithic
Pupil Apodisation

- Used simple not optimised function for attenuation B:
 - Super Gaussian
 - $x = \text{off-axis angle}$
 - c is adjusted to attenuate by 10^{-4} at pupil edge (both un- and replicated)

- Expect to
 - broaden the image core
 - reduce side-lobes

$$B(x) = e^{-\left(\frac{x}{c}\right)^8}$$
Simulation

- **Unapodised**
 - Black: unreplicated
 - Green: 3-fold replication
- **Apodised**
 - Red: unreplicated
 - Blue: 3-fold replication
- **Efficiency:**
 - 65% throughput
- **Sidelobes suppressed**

Units: λ/D

16 May 2005 www.phy.hw.ac.uk/~phyhic
Off-axis effects

- Off-axis (planet) images will be distorted:
 - Wavelength dependent => chromatic effects.
 - Will these obstruct spectroscopy?
 - What other effects will this have - SNR?

50 mas

100 mas

150 mas

y: log(int) x: mas

16 May 2005
Simulation

- Planets at $7\lambda/d$ and $21\lambda/d$, each 10^{-10} brightness of host star
- 3 colours shown: 760nm (blue), 872nm (green), 1000nm (red & black)

Units: λ/d (at 1000 nm)

16 May 2005

www.phy.hw.ac.uk/~phyhic
Star Stop added
– $5\lambda/d$ half-width solid star stop in image plane
– second pupil added, no Lyot stop
– Unreplicated: solid red, replicated: solid blue
– right: three wavelengths (coloured)
Coronagraph

- Broadband (V-band in 8 wavelengths)
Sensitivity: amplitude

- At this accuracy, amplitude errors matter
- Simulations suggest that better than 0.1% is required to image exo-earths
- Simulation:
 - random amplitude error 10^{-3} max.
 - pixel size ~ 1 cm
Pixel size

- 10-3 random amplitude errors, with 25, 251, 2501 pupil pixels (100, 10, 1 mm/pixel)
Sensitivity: phase

- Higher sensitivity to phase errors
- Simulation suggests that better than $\lambda/10000$ is needed to image exo-earths
- Pixel size 1 cm

Random phase error max.

- $10^{-3}\lambda$
- $10^{-4}\lambda$
- $10^{-5}\lambda$
Hyper Telescope?

- Pupil Replication \(\neq \approx \neq \) Hyper Telescope?
 - Assessment of the hyper telescope principle
 - using analysis like before
 - simplified situation
 - characterisation only
 - adding to discussion...
Overview

On axis: Pupil Replication = Hyper Telescope

Off axis:

pupil replication hyper telescope
Hyper Telescope

• 1-D, 3 pupils with equal spacing h between the telescopes and joined:

\[
T = A \left(1 + 2 \cos \left(2 \pi \left(x + \left(\frac{h}{d} - 1\right) \sin (\alpha)\right)/\lambda\right) \right) \text{sinc} \left(\frac{d \pi (x - \sin (\alpha))/\lambda}{\lambda}\right)
\]

– => similar to pupil replication but:
– => cos() now dependent on angle
– on axis (star light suppression) equal to PR
HT Analysis

- PSF: $\alpha = 0.3 \lambda/d$ of single pupil,
 $h = 2d$ (3d centre to centre)

Pupil Replication (PR) Hyper Telescope (HT)
HT Analysis

- Same as last slide but:
- PSF: $\alpha = 1.6 \lambda/d$ of single pupil,

Pupil Replication (PR) Hyper Telescope (HT)
Analysis

- **HT-PR:**
 the hyper telescope is replicated 3 times:

\[
T_{HT-PR} = \frac{T_{HT}}{3} \left(1 + 2 \cos \left(6\pi d \left(x - \sin(\alpha)\right)/\lambda\right)\right)
\]

- **PR-HT:**
 the 3 replications are made in each of the hyper telescopes:

\[
T_{PR-HT} = \frac{T_{HT}}{3} \left(1 + 2 \cos \left(6\pi d \left(x + (h/d - 1) \sin(\alpha)\right)/\lambda\right)\right)
\]
HT-PR or PR-HT

- 3x3 pupils
- $\alpha = 0.3 \ \lambda/d$
$H = 30 \, d, \, \alpha = 0.01 \, \lambda/d$
Evaluation?

• Based on this analysis only:
• Options:
 – pupil replication
 – hyperteleoscope
 – combined
 – other...
• Criteria:
 – on-axis behaviour: star suppression
 – off-axis behaviour: planet detection
Information

– Analysis of Pupil Replication (to be published).

– www.phy.hw.ac.uk/~phyhic