

Applications and methods of Wavefront measurement

Alan Greenaway Heriot-Watt University

Adaptive Optics

Adaptive = feedback control

- Adaptive Optics
 - ➤ 3 Components
 - Wavefront Modulator (WFM)
 - Wavefront Sensor (WFS)
 - Control loop

Active optics = no feedback

- No WFS
- No on-line control loop
- Control signal pre-computed off-line (e.g. gravity sag, ...)

Example

Retinal image corrected for aberrations of anterior optics of the eye (Univ of Rochester)

Without Compensation

With Adaptive Compensation

5 arcmin

Example

Image from CFHT at J band $(1.65 \mu m)$

Image Quality

- AO correction increases Strehl but residual errors still have r₀ scale
- AO 'corrected' images have 'core' and 'skirt'

Strehl ratio

•
$$S \sim \exp(-\sigma_{\phi}^2)$$

- Image peak brightness falls rapidly with D/r₀
- Small errors
 - $(\lambda/4 \text{ or less}) > \text{good}$ images, S>0.4
 - $\lambda/10$ or less S>0.7

So...

- For imaging $\pm \lambda/10$ correction is very good
- For spectroscopy this is OK except for crowded-field work
- Is AO correction to $<\lambda/10$ practical?

– Probably only in rare circumstances...

• What about non-astronomical, non-imaging applications?

Optical metrology

- Metrology of optical wavefronts can give:
 - Surface shape
 - Positional information
 - Depth information
- This non-contact method can:
 - be used at any λ
 - give high accuracy (best results <u>+</u>0.7nm) and be time resolved

Other Applications

- Monitoring processes laser-welding, laser drilling, fluid flow, ...
- Material inhomogeneity
- Optical components and assembly testing
- Robotic imaging

- shape of weld, beam control, turbulence measurement, ...
- tomographic measurement
- non-interferometric tolerancing, validation
- ➤ 3-d scene

WFS Requirements

- For metrology applications high accuracy is required:
 - \triangleright Request for $\lambda/1000$ in float glass industry
 - \triangleright Request for $\lambda/40000$ in telecomms!!
- Depth measurement to ~ 1µm in biomedical applications

Thin-film induced wavefront aberrations

- The Fresnel reflection from the rear surface of a thin film provides
 - displaced image of source (tilt, defocus)
 - spherical aberration of source image
 - other aberrations

Film thickness from 100nm to 10µm

Wavefront sensors

Technical basis

Techniques

- Wavefront slope
- Wavefront curvature
- Image quality criteria

- Shack-Hartmann
- Shearing interferometer
- Wavefront curvature sensor
- Phase-diversity wavefront sensor
- e.g. max of integral of intensity squared

Shack-Hartmann Wavefront Sensor

- MEASURE LUCAL PHASE GRADIENTS
 - HARTMANN SENSOR: MEASURE SUBAPERTURE INTENSITY CENTROID
 - SHEARING SENSOR: USE 4-BIN PHASE ALGORITHM
- DIGITAL RECONSTRUCTOR COMPUTES PHASE FROM MEASURED GRADIENTS

- Shack-Hartman WFS used in most AO applications
- Wavefront reconstructed from integration of local tilts
- Regions over which tilts are measured are defined by lenslet matrix

Shack-Hartmann Wavefront Sensor

- Anecdotal evidence suggests that calibration is a significant problem
 may be solved with chip-scale SH-WES
 - may be solved with chip-scale SH-WFS
- Best reported measurements ~ λ/100 defocus error measurement (Wavefront Sciences, July 2001) unpublished to date

Intensity Transport Equation

• Parabolic wave eqn

$$\left(i\frac{\partial}{\partial z} + \frac{\nabla^2}{2k} + k\right)u_z(r) = 0$$

- Let $u_z(r) = \sqrt{I_z(r)} \exp(i\phi_z(r))$
- Multiply PWE by u^* on the left and by uon the right - take the difference and... $-k \frac{\partial}{\partial z} I_z(r) = \nabla .(I_z(r) \nabla \phi_z(r))$

ITE solution

- Expanding ITE - $k \frac{\partial}{\partial z} I_z(r) = I_z(r) \nabla^2 \phi_z(r) + \nabla I_z(r) \cdot \nabla \phi_z(r)$ - A curvature term - A slope term $I_z(r) \nabla^2 \phi_z(r)$ $\nabla I_z(r) \cdot \nabla \phi_z(r)$
- If intensity is const $\nabla I_z(r)$
 - $\nabla I_z(r) = 0$

• ITE becomes

$$-\frac{k}{I_z(r)}\frac{\partial}{\partial z}I_z(r) = \nabla^2 \phi_z(r)$$

Phase-diverse wavefront sensing (wavefront curvature sensing)

• Solution of ITE gives wavefront

$$\Psi(r) = -k \int_{R} dr' G(r, r') \frac{\partial I(r')}{\partial z}$$

$$\frac{I_{\text{Plane 1}} - I_{\text{Plane 2}}}{z_1 - z_2} \sim \frac{\partial I}{\partial z}$$

Why Phase Diversity?

- Phase-diversity can operate in the far-field pupil space (c.f. aperture synthesis)
 - Source structure is encoded in correlations of wavefront, not in wavefront itself
- Algorithm well-known
 Previously implemented as an iterative procedure

Synthesis Imaging

- An array of holes acts like a large, masked lens
- Radio astronomy methods unsuited to snapshot use
- Redundant Spacings Calibration (RSC) > 'snapshot' use
- Redundancy is a required for unique data inversion

Redundancy in Synthesis Imaging

- N apertures $\geq N(N-1)/2$ Ways to get Fourier components
- Unknown phase for each aperture
- # data < # unknowns parametric solutions
- Solve through the use of redundancy (e.g. CLEAN)

- redundancy:
 - model-building
 - constraint object support Fourier interpolation
 - redundant observations (RSC)
- Far-field/pupil-plane ➢ source structural information delocalised

How to collect data?

IMP® gratings

C.f. twin images in holography

Diffractive Optics

• Phase-diversity scheme needs wavefront intensity pattern on two separate planes: Scheme adopted uses IMP[®]s

Undistorted Grating - identical images of a single object layer in each order

Distorted Grating - images of different object layers on a single image plane

Experimental Validation

- Test wavefronts
 - Pure Zernike modes
 - Mixture of Zernike modes
 - Random wavefront errors
- Experimental 3-d imaging
 - Layers imaged as close together as 50 µm
 - Layers imaged typically several metres apart
 - In principle, layers can be kilometres apart
 - 9 layers imaged experimentally
 - Up to 25 Layer imaging designed

Applications of optical metrology

- Surface profiling •
- welding, laser drilling, fluid flow, ...
- Material inhomogeneity
- Position sensing
- **Robotic imaging**

- $> \lambda/1000$ accuracy?
- Monitoring processes > Depth of hole, shape of weld, turbulence measurement
 - Tomographic reconstruction
 - Bearing and (short) distances ➢ 3-d information about scene

Applications of Wavefront Sensing

- Component of AO system
- Testing optical components and complete assemblies
- Laser-beam quality, M²

- Modal or zonal feedback to wavefront modulator
- Non-interferometric quality control, esp at non-visible wavelengths
- Measure spot on several planes

Phase-diverse wavefront sensing

- Measured curvature vs set curvature shows systematic trends
- Possible errors in

 alignment
 - cross-talk
 were eliminated
 (effect was too large)

Deviation from straight line ~ λ 100 Deviation from quadratic ~ λ 300₂₇

- Can we generate a test \rightarrow A point source at z wavefront with $\lambda/1000$ precision?
- gives known wavefront curvature
- is the set distance to the source
- Δz is the accuracy with which z can be set
- Δs is the maximum error in set wavefront curvature
- is the pupil radius

If $r = \sqrt{2 \times 10^{-2}}; \Delta s = 5 \times 10^{-10}; \Delta z = 5 \times 10^{-3}$ $\sqrt{\frac{r^2}{2}\frac{\Delta z}{\Delta s}} > z > 30 \mathrm{m}$

- At 30m bench is not widely available
- A folded path is difficult to measure

- Fold the optical path
- Absolute validation difficult by this route

Thus use relative curvature induced by small displacements of the source

- How do we set the lab tests at finite distance?
- Model as shown below with source focussed on camera

• Combination focal length

if
$$f_1 = z; f_2 = v$$

• What if source is shifted without re-focussing?

$$f_0 = \frac{f_1 f_2}{f_1 + f_2}$$

- satisfies usual lens eqns
 input collimated between lenses
- normal wfs description if grating between lenses

 $z \rightarrow z + \Delta z$

What is wavefront 'sag' between lenses if source is shifted?

Image distance gives
 virtual source position

$$v_{\Delta z} = \frac{f_0(z + \Delta z)}{z + \Delta z - f_0} \stackrel{f_0 = z}{\Longrightarrow} z + \frac{z^2}{\Delta z}$$

• 'Sag' is given by

• So expect to see linear + quadratic behaviour

Measurements

33

Setting the curvature

Images in diffraction orders have same scale iff the source is imaged in central order.

Change curvature to test and calibrate measurements

Phase-diverse wavefront sensing

Requirements

- Need Green's function
- Need to get boundary conditions correct
- Need accurate intensity gradient

- Calculated at DERA*
- Set from I_1 - I_2 at pupil edges and z_1 - z_2
- Need accurate spacing to get accurate gradient

*now QinetiQ

Phase-diverse Wavefront Sensing

Effects of wavefront shape

a) defocus
b) astigmatism
c) coma
d) trefoil
e) spherical aberration

How critical are placements?

Provided that source is not in the near field and the IMP[®] is in front of the lens, the positions of the planes are reliably defined

37

Best Results

Noise on Curvature with a 150 mm lens

What of remaining effects?

Background subtraction

- Vital for accuracy
- Darkened lab but computer screens in lab vary in brightness
- No spectral filters used (avoid unknown aberrations)

- No attempt in lab to control temperature
- No attempt in lab to control air currents
- Jitter on translation stage
- Numerical output to only 3 decimal places

Restrictions

- Intensity assumed uniform
- Wavefronts continuous with continuous 1st derivative
- Close measurement plane to approx derivative

- Metrology implies laser illumination, implies speckle
- Disadvantage if measuring man-made surfaces
- Dynamic range is restricted

Wavefront Sensing Schematic

Other diversity Kernels?

- Why restrictions?
- But ITE is an approximation
- What is special about phase diversity/ wavefront curvature?

- Solution constraints on ITE
- iterative solutions reconstruct discontinuities
 - Easy interpretation
 - Local measurement
 - Fast implementation

Greater flexibility is likely if the approximation of the ITE is avoided and other kernels investigated for WFS - e.g. RSC

Anisoplanatism

• By similar triangles

$$\frac{d}{R_1} = \frac{D}{R_2} \Longrightarrow \frac{R_2}{R_1} = \frac{D}{d}$$

terrestrial imaging is almost always severely anisoplanatic

Conclusions

- Phase-diversity WFS based on IMP[®] technology is capable of $\lambda/1000$ accuracy
- Accuracy is λ independent, best 0.7nm
- Control of background subtraction is greatest problem with present arrangement
- Greater flexibility likely using more complete description and other diversity kernels