Applications and methods of Wavefront measurement

Alan Greenaway
Heriot-Watt University

19 June 2002
Adaptive Optics

- Adaptive = feedback control
- Adaptive Optics
 - 3 Components
 - Wavefront Modulator (WFM)
 - Wavefront Sensor (WFS)
 - Control loop
- Active optics = no feedback
 - No WFS
 - No on-line control loop
 - Control signal pre-computed off-line (e.g. gravity sag, ...)
Example

Retinal image corrected for aberrations of anterior optics of the eye (Univ of Rochester)
Example

Image from CFHT at J band (1.65\textmu m)
Image Quality

- AO correction increases Strehl but residual errors still have r_0 scale

- AO ‘corrected’ images have ‘core’ and ‘skirt’
Strehl ratio

- $S \sim \exp(-\sigma^2_\phi)$
- Image peak brightness falls rapidly with D/r₀
- Small errors
 - (λ/4 or less) > good images, S>0.4
 - λ/10 or less S>0.7
So…

- For imaging $\pm \lambda/10$ correction is very good
- For spectroscopy this is OK except for crowded-field work
- Is AO correction to $< \lambda/10$ practical?
 - Probably only in rare circumstances...

- What about non-astronomical, non-imaging applications?
Optical metrology

• Metrology of optical wavefronts can give:
 – Surface shape
 – Positional information
 – Depth information

• This non-contact method can:
 – be used at any λ
 – give high accuracy (best results $\pm 0.7\text{nm}$) and be time resolved
Other Applications

- Monitoring processes - laser-welding, laser drilling, fluid flow, ...
- Material inhomogeneity
- Optical components and assembly testing
- Robotic imaging

- shape of weld, beam control, turbulence measurement, ...
- tomographic measurement
- non-interferometric tolerancing, validation
- 3-d scene
WFS Requirements

• For metrology applications high accuracy is required:
 ➢ Request for $\lambda/1000$ in float glass industry
 ➢ Request for $\lambda/40000$ in telecomms!!

• Depth measurement to $\sim 1\mu m$ in biomedical applications
Thin-film induced wavefront aberrations

- The Fresnel reflection from the rear surface of a thin film provides
 - displaced image of source (tilt, defocus)
 - spherical aberration of source image
 - other aberrations

Film thickness from 100nm to 10μm

19 June 2002
Wavefront sensors

Technical basis

- Wavefront slope
- Wavefront curvature
- Image quality criteria

Techniques

- Shack-Hartmann
- Shearing interferometer
- Wavefront curvature sensor
- Phase-diversity wavefront sensor
- e.g. max of integral of intensity squared
Shack-Hartmann Wavefront Sensor

- Shack-Hartman WFS used in most AO applications
- Wavefront reconstructed from integration of local tilts
- Regions over which tilts are measured are defined by lenslet matrix
Shack-Hartmann Wavefront Sensor

- Anecdotal evidence suggests that calibration is a significant problem
 - may be solved with chip-scale SH-WFS

- Best reported measurements ~ $\lambda/100$ defocus error measurement (Wavefront Sciences, July 2001) - unpublished to date
Intensity Transport Equation

- Parabolic wave eqn
 \[
 \left(i \frac{\partial}{\partial z} + \frac{\nabla^2}{2k} + k \right) u_z(r) = 0
 \]

- Let
 \[
 u_z(r) = \sqrt{I_z(r)} \exp(i\phi_z(r))
 \]

- Multiply PWE by \(u^* \) on the left and by \(u \) on the right - take the difference and...
 \[
 -k \frac{\partial}{\partial z} I_z(r) = \nabla \cdot (I_z(r) \nabla \phi_z(r))
 \]
ITE solution

- Expanding ITE containing…
 - A curvature term
 - A slope term

- If intensity is const

- ITE becomes

\[-k \frac{\partial}{\partial z} I_z(r) = I_z(r)\nabla^2 \phi_z(r) + \nabla I_z(r) \cdot \nabla \phi_z(r)\]

\[\nabla I_z(r) = 0\]

\[-\frac{k}{I_z(r)} \frac{\partial}{\partial z} I_z(r) = \nabla^2 \phi_z(r)\]
Phase-diverse wavefront sensing
(wavefront curvature sensing)

- Solution of ITE gives wavefront

\[\Psi(r) = -k \int_{R} dr' G(r, r') \frac{\partial I(r')}{\partial z} \]

\[\frac{I_{\text{Plane 1}} - I_{\text{Plane 2}}}{z_1 - z_2} \sim \frac{\partial I}{\partial z} \]
Why Phase Diversity?

• Phase-diversity can operate in the far-field pupil space (c.f. aperture synthesis)
 – Source structure is encoded in correlations of wavefront, not in wavefront itself

• Algorithm well-known
 – Previously implemented as an iterative procedure
Synthesis Imaging

- An array of holes acts like a large, masked lens
- Radio astronomy methods unsuited to snapshot use
- Redundant Spacings Calibration (RSC) > ‘snapshot’ use
- Redundancy is a required for unique data inversion
Redundancy in Synthesis Imaging

- N apertures \(\Rightarrow \) N(N-1)/2 Fourier components
- Unknown phase for each aperture
- \# data < \# unknowns \(\Rightarrow \) parametric solutions
- Solve through the use of redundancy (e.g. CLEAN)

- Ways to get redundancy:
 - model-building
 - constraint object support \(\Rightarrow \) Fourier interpolation
 - redundant observations (RSC)
- Far-field/pupil-plane \(\Rightarrow \) source structural information delocalised
Phase diversity/wavefront curvature

\[
\frac{2\pi (I_1 - I_2)}{\lambda \int \delta z} \cdot G = \phi
\]
How to collect data?

IMP® gratings

C.f. twin images in holography
Diffractive Optics

- Phase-diversity scheme needs wavefront intensity pattern on two separate planes: Scheme adopted uses IMP®'s

Undistorted Grating - identical images of a single object layer in each order

Distorted Grating - images of different object layers on a single image plane

IMP® is a DERA Trademark

DERA is now QinetiQ

19June 2002
Experimental Validation

• Test wavefronts
 – Pure Zernike modes
 – Mixture of Zernike modes
 – Random wavefront errors

• Experimental 3-d imaging
 – Layers imaged as close together as 50 μm
 – Layers imaged typically several metres apart
 – In principle, layers can be kilometres apart
 – 9 layers imaged experimentally
 – Up to 25 Layer imaging designed

19 June 2002
Applications of optical metrology

- Surface profiling
- Monitoring processes - welding, laser drilling, fluid flow, ...
- Material inhomogeneity
- Position sensing
- Robotic imaging

- λ/1000 accuracy?
- Depth of hole, shape of weld, turbulence measurement
- Tomographic reconstruction
- Bearing and (short) distances
- 3-d information about scene
Applications of Wavefront Sensing

- Component of AO system
- Testing optical components and complete assemblies
- Laser-beam quality, M^2

- Modal or zonal feedback to wavefront modulator
- Non-interferometric quality control, esp at non-visible wavelengths
- Measure spot on several planes
Phase-diverse wavefront sensing

- Measured curvature vs set curvature shows systematic trends
- Possible errors in
 - alignment
 - cross-talk
 were eliminated
 (effect was too large)

\[y = 0.0278x^2 + 0.8805x + 0.0041 \]

Deviation from straight line ~ $\lambda/100$
Deviation from quadratic ~ $\lambda/300$

19 June 2002
How to test the WFS at $\lambda/1000$?

- Can we generate a test wavefront with $\lambda/1000$ precision?

A point source at z gives known wavefront curvature

z is the set distance to the source

Δz is the accuracy with which z can be set

Δs is the maximum error in set wavefront curvature

r is the pupil radius

$s \sim -\frac{r^2}{2z} \Rightarrow z \geq \sqrt{\frac{r^2}{2} \frac{\Delta z}{\Delta s}}$

If $r = \sqrt{2} \times 10^{-2}; \Delta s = 5 \times 10^{-10}; \Delta z = 5 \times 10^{-3}$

$z > 30$m
How to test the WFS at $\lambda/1000$?

- At 30m bench is not widely available
- A folded path is difficult to measure

- Fold the optical path
- Absolute validation difficult by this route
- Thus use relative curvature induced by small displacements of the source
How to test the WFS at $\lambda/1000$?

- How do we set the lab tests at finite distance?
- Model as shown below with source focussed on camera
How to test the WFS at $\lambda/1000$?

• Combination focal length

$$f_0 = \frac{f_1 f_2}{f_1 + f_2}$$

if $f_1 = z; f_2 = v$

- satisfies usual lens eqns
- input collimated between lenses
- normal wfs description if grating between lenses

$z \rightarrow z + \Delta z$

• What if source is shifted without re-focussing?
What is wavefront ‘sag’ between lenses if source is shifted?

- Image distance gives virtual source position

\[\nu_{\Delta z} = \frac{f_0(z + \Delta z)}{z + \Delta z - f_0} \implies z + \frac{z^2}{\Delta z} \]

- ‘Sag’ is given by

\[s = -\frac{r^2}{2z(1 + \frac{z}{\Delta z})} \]

\[\sim -\frac{r^2}{2z} \times \frac{\Delta z}{z} \times \left(1 - \frac{\Delta z}{z} + \ldots \right) \]

\[\sim -\frac{r^2\Delta z}{2z^2} + \frac{r^2(\Delta z)^2}{2z^3} + \ldots \]

- So expect to see linear + quadratic behaviour
Measurements

\[y = -0.8979x \]

\[y = -0.0324x^2 - 0.8979x - 0.0011 \]

\[y = -0.0278x^2 - 0.8805x - 0.0041 \]

Exp Defocus
Theo Defocus
Linear (.)

\[y = -0.8979x \]

\[y = -0.0278x^2 - 0.8805x - 0.0041 \]

\[y = -0.0324x^2 - 0.8979x - 0.0011 \]
Setting the curvature

Images in diffraction orders have same scale iff the source is imaged in central order.

Change curvature to test and calibrate measurements
Phase-diverse wavefront sensing

Requirements

- Need Green’s function
- Need to get boundary conditions correct
- Need accurate intensity gradient

- Calculated at DERA*
- Get from $I_1 - I_2$ at pupil edges and $z_1 - z_2$
- Need accurate spacing to get accurate gradient

*now QinetiQ
Phase-diverse Wavefront Sensing

Effects of wavefront shape

a) defocus
b) astigmatism
c) coma
d) trefoil
e) spherical aberration

19 June 2002

How critical are placements?

Provided that source is not in the near field and the IMP® is in front of the lens, the positions of the planes are reliably defined.

\[U_0 = -5 \text{ m} \text{Red is } U_{+1} \text{ and Green is } U_{-1} \]
Best Results

Noise on Curvature with a 150 mm lens

Samples

λ/167
λ/200
λ/250
λ/333
λ/500
λ/1000
What of remaining effects?

- Background subtraction
 - Vital for accuracy
 - Darkened lab but computer screens in lab vary in brightness
 - No spectral filters used (avoid unknown aberrations)

- No attempt in lab to control temperature
- No attempt in lab to control air currents
- Jitter on translation stage
- Numerical output to only 3 decimal places
Restrictions

- Intensity assumed uniform
- Wavefronts continuous with continuous 1st derivative
- Close measurement plane to approx derivative
- Metrology implies laser illumination, implies speckle
- Disadvantage if measuring man-made surfaces
- Dynamic range is restricted
Wavefront Sensing Schematic
Other diversity Kernels?

- Why restrictions?
- But ITE is an approximation
- What is special about phase diversity/wavefront curvature?

▶ Solution constraints on ITE
▶ Iterative solutions reconstruct discontinuities
▶ Easy interpretation
▶ Local measurement
▶ Fast implementation

Greater flexibility is likely if the approximation of the ITE is avoided and other kernels investigated for WFS - e.g. RSC
Anisoplanatism

By similar triangles

\[
\frac{d}{R_1} = \frac{D}{R_2} \implies \frac{R_2}{R_1} = \frac{D}{d}
\]

terrestrial imaging is almost always severely anisoplanatic
Conclusions

- Phase-diversity WFS based on IMP® technology is capable of \(\lambda/1000 \) accuracy
- Accuracy is \(\lambda \) independent, best 0.7nm
- Control of background subtraction is greatest problem with present arrangement
- Greater flexibility likely using more complete description and other diversity kernels