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Wave-front sensing by use of a Green’s function
solution to the intensity transport equation:

reply to comment
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A recent comment has pointed out that some practically important aberration modes have zero curvature and
in consequence seem difficult to sense using phase-diversity approaches that are equivalent to curvature sens-
ing. Here we comment on the approaches that should be adopted when faced with a need to measure such
aberration modes. © 2007 Optical Society of America

OCIS codes: 010.0010, 010.1080, 010.7350, 120.5050.
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. INTRODUCTION
n a comment elsewhere in this issue [1] C. Campbell
oints out that certain practically important wavefront
berration modes, notably first-order astigmatism and
refoil (labels used for these modes vary, but adopting the
escriptions of the polynomials specified, these match C.
ampbell’s descriptions using Z2

2 and Z2
−2, for example),

ave a zero Laplacian and thus no curvature. The author
omments that the first-order astigmatic mode is an im-
ortant aberration in ophthalmology but claims, incor-
ectly, that the lack of curvature means that these modes
annot therefore be sensed using the Green’s theorem-
ased data analysis proposed by two of the authors of this
eply [2]. The data characteristic through which aberra-
ion modes with zero Laplacian can be sensed was, in fact,
oted in the comment [1] but was clearly not felt to pro-
ide a suitable sensing mechanism. We thank the author
f the comment [1] for his observations, which appear to
rovide correct and useful analysis and to raise some in-
eresting points. However, we disagree with the conclu-
ion that he draws from his analysis—the ramifications of
hich are addressed in this brief reply—and wish to draw
ttention to some of the long-standing literature relevant
o the phase-reconstruction challenge.

We divide this response into comments relating to sys-
ems in which the wavefront to be sensed is confined to a
upport with definite, hard edges and to those situations
n which the support is soft edged.

. HARD-EDGED APERTURES
he use of the wavefront sensing analysis system [2]
ased on Green’s functions and applied to both first-order
stigmatism and to trefoil in systems with a hard-edged
perture has, in fact, already been demonstrated experi-
entally by the authors in collaboration with colleagues

3]. Our comments here are therefore intended to high-
1084-7529/07/082482-3/$15.00 © 2
ight these results and to re-emphasize those properties of
he data analysis [2] that render measurement of these
berration modes with zero curvature both feasible and
traightforward.

The principle of phase-diverse wavefront sensing [4,5]
nd curvature sensing [6] as a special case are well estab-
ished and form part of an extensive literature on wave-
ront reconstruction. In general, one has access only to an
nergy distribution (intensity function) in optics, and
here are many occasions in which the interpretation of
he optical field requires that the underlying complex am-
litude function be known. For one-dimensional problems
t is well understood that there are, in general, a count-
ble infinity of solutions [7] and that either a priori infor-
ation [8,9] about the optical field or a second intensity
easurement are required in order to reconstruct the

omplex-valued optical field from the available energy
easurements. Measure-theoretic arguments suggest

hat for two-dimensional problems the reconstruction of
hase from a single energy distribution is almost always
10] unique (that is, ambiguities exist only in the case of
unctions forming a set of zero measure). However, simple
ounterexamples can easily be formulated [11], and in
ost practical cases reconstructions are made from mea-

urements of two intensity distributions both of which re-
ated to the underlying complex amplitude in different
nd defined ways. Measurements reliant on two defocus
alues, such as wavefront curvature, are special cases of
his general principle.

Two-defocus measurements can be explained from a
eometric optics interpretation, in that the defocus is
quivalent to measurement of the wave function on two
lanes along the propagation axis. In this description the
oncave (convex) regions of wavefront converge (diverge)
s the wavefront propagates, leading to a positive (nega-
ive) axial intensity gradient measured in the direction of
ropagation. The wavefront-curvature technique exploits
his by estimating the local wavefront curvature from the
007 Optical Society of America
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xial intensity gradient estimated from the difference be-
ween the defocused images. The data processing ap-
roach is encapsulated in Eq. (4) of [2] and is restated in
1].

In seeking a solution to a differential equation of this
orm one has to remember that this must be posed as a
oundary-value problem and that elements of the general
olution must depend on the boundary values. For this
eason it has long been recognized that the practical
mplementation of wave-function reconstruction through
he intensity transport equation [4,5] must provide infor-
ation about the radial slope of the wavefront at the pu-

il boundary, and edge sensors to achieve this were sug-
ested explicitly in [4,5] and implicitly in [6]. The solution
tilized by Roddier [6] estimated the radial slope at the
upil edge through the use of a segmented ring of detec-
ors. For those wavefront error modes with zero Laplacian
he boundary conditions are the only component that de-
nes the form of the solution, the contributions from
ithin the pupil providing a null signal, as noted by C.
ampbell [1]. Despite the fact that Campbell notes [1]

hat other signals may be generated “… at the perimeter
f an aperture…” he continues “… perhaps, in some way
ot clear from their paper, Woods and Greenaway feel
hat the Green’s function used codes this information into
heir expression … [but it] cannot add information not
resent in the measured data.”
The solution proposed by Woods and Greenaway [2]

oes include an estimate of the radial slope of the wave-
ront at the pupil boundary, and discussion of this point
as the purpose of Section 3 of the paper, especially the

ection from just before Eq. (10) to just after Eq. (13). In-
eed, the principal thrust of the paper [2] is that this
oundary-value information can be extracted from an
rea integral that covers the pupil boundary and does not
equire special-purpose detection schemes in order to
chieve that. It is evident that this benefit of the proposed
mplementation was insufficiently clear and, for that rea-
on, we will briefly reiterate the main points of that dis-
ussion.

As correctly noted [1] the formulation used [2] to de-
elop the Green’s function is dependent on the geometry
f the problem and not on the data. In propagation be-
ween the two measurement planes from which the cur-
ature data is derived, the radial wavefront slope at the
perture edge is manifest through a displacement of that
dge radially in the direction of the optic axis (where the
radient on the first plane is directed inwards) or away
rom the optic axis (where the radial wavefront slope at
he aperture edge in the first plane points away from the
ptical axis). Thus, and in the small-signal approxima-
ion, a discontinuity at the pupil edge leads to a signal the
trength and arithmetic sign of which are dependent on
he value and direction of the radial wavefront slope at
he pupil edge. This signal appears as an encircling dis-
ontinuity, the locus of which follows the pupil edge. It is
his that reconstructs, from the area integral, the line in-
egral that should be present in order to represent the
oundary conditions. The way in which those data are in-
orporated in the solution is encapsulated [2] in Eqs. (10)–
13) and demonstrated in the experimental tests previ-
usly published [3]. Figure 1(b) here shows a computer
imulation of the signal produced at the aperture edge for
stigmatism mode Z2

−2 with a uniformly illuminated pupil
input wavefront phase shown in Fig. 1(a)].

. SOFT-EDGED APERTURES
ystems in which the intensity is not constant within the
upil still generate signals within a phase-diverse mea-
urement system. The necessary and sufficient conditions
or the generation of an error signal whenever the wave-
ront is not plane (i.e. constant phase) have been dis-
ussed in [12]. In general practical problems in metrology
including ophthalmology) rely on the measurement of co-
erent wavefronts emanating from laser sources. This

eads to the generation of scintillation in the measure-
ents, violating assumptions on which the Green’s func-

ion approach is predicated, since the lateral gradient
erm is discarded in the analysis presented in Woods and
reenaway (and elsewhere, although [5] provides a solu-

ion for a Gaussian beam). However, analysis [[12]] shows
hat a wavefront that is not plane always produces a sig-
al error, modulo � radians (which implies ambiguity in
he measurement of some discontinuous distributions)
hether or not the pupil-plane intensity distribution is
niform within the pupil boundaries.
Zernike polynomials of the form discussed by C. Camp-

ell [1] present a potentially greater problem when deal-
ng with soft-edged distributions, such as a Gaussian-
rofile [5] laser beam. Here we note a problem with
xperimental data of deciding where to delineate the ra-
ius of the unit disc on which the Zernike polynomials are
efined. In the algorithm described in [2] the discontinu-
ty delineates the pupil edge and the pupil (unit disc) ra-
ius is thereby defined. However, in soft-edged problems
r in problems where a noncircular pupil is involved, this
pproach is unsatisfactory. The comment made thus high-
ights a problem that exists in circumstances slightly dif-
erent from those described by the author [1]. Although it

ig. 1. (a) shows an astigmatic wavefront that is used to gener-
te an error signal using phase diversity based on defocus. In (b)
he error signal generated from a uniformly illuminated (i.e.,
ard-edged) pupil is shown. Note that the error signal is confined
o the edge. For a soft-edged pupil (in this case a Gaussian profile
ith 10% drop in flux from center to rim) the error signal shown

n (c) is uniformly distributed but of lower amplitude.
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hould be noted that other phase-diversity methods satis-
ying the conditions described in [12] can provide signals
ot dependent on wavefront curvature, and can thus
ense zero-curvature wavefront components, the very
efinition of the Zernike polynomials discussed is predi-
ated on a function with circular support (unit disc) and
niform amplitude within that disc. For wave functions in
oft-edged systems, therefore, the Zernike polynomial de-
cription needs to be replaced with a more general de-
cription such as the Kahunen–Loeve decomposition.
onetheless, the error signal produced by a zero-

urvature wavefront deformation in the case of nonuni-
orm illumination is not confined to the aperture edge but
xists everywhere that the illumination level is changing,
s shown in Fig. 1(c) [input wavefront phase shown in fig-
re 1(a)]. Note that the signal is spread across the sup-
ort of the wavefront but is of low value.
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