

Pupil Replication

Frank SpaanAlan GreenawayErwan ProtVincent Mourai

PREDRIS

- Pupil Replication for Extreme Dynamic Range Imaging Spectroscopy
- Start: 1 April 2005
- Two years, funded by PPARC
- Publication: Pupil Replication for Exo-Planet Imaging; ApJL, 10 January 2005 (referenced in Nature).
- This presentation: includes new unpublished results.

16 May 2005

Overview

- Introduction to Pupil Replication
- Characterization and analysis
- Error Assessment
- Experimental proof of principle
- Simulation of a Coronagraph
- Comparison with Hyper Telescope principle

Context

- Exoplanet indirect detection since 1995
- ESA Cosmic Vision 2020 (April 2005):
 - fundamental physics
 - cosmology
 - solar system
 - planetary formation, life, exoplanets
 - => direct detection of exoplanets
 - => proposals due early 2007

Numbers

- Dynamic range starflux / planetflux:
 10¹⁰ (visual, reflected), 10⁶(infrared, thermal)
- A planet at 1 AU around a star at 20 pc seen with 3 m telescope
 - at 36 λ /d at 600 nm (stardisk => 0.2 λ /d)
 - at 2 λ /d at 10 micron
 - flux: one hour,V-band, efficiency 50% =>
 - ~500 photons (planet around 0 magnitude star)
 - ~.05 photons (planet around 10 magnitude star)

Star flux problem

- Flux from host star dominates exoplanet:
- Techniques to suppress scattered host flux:
 - coronography
 - pupil apodisation
 - interferometry

(0) (0)

diffraction limited PSF, x-axis in λ/d

Inner Working Angle

- Inner working angle (IWA): the minimum angular distance from the star at which a planet can be detected.
- All techniques need image-plane masks
 - mask size is typically several λ/D
 - side-lobe suppression often increases star image
 - increasing IWA makes earth-like detection harder
- => decrease size of star image
 => pupil replication

www.phy.hw.ac.uk/~phyhic

16 May 2005

Pupil Replication

- Axial wavefront is continuous (blue), like larger telescope.
- Non-axial wavefront is discontinuous (red), and appears like a blazed grating
- Etendue is preserved (pupil area * solid view angle)

Expected Results

- Consider 3-fold replication in 1-d
- Axial pupil wavefront is 3x wider and 3x fainter
- Image of unresolved axial star is 3x narrower and 3x brighter
- Sidelobes are 3x fainter
- Image stop to remove star flux can be smaller

HERIO

PP•\RC

Expected Limits

- Violation of homothetic mapping
 - position and orientation of the replicated images is not an exact scaled copy of the unreplicated image
- => Non-isoplanatic imaging
 - PSF dependent on the viewing direction.
- => Requirement:
 - Maximum angular diameter of star + telescope pointing error < some limit: θ

Example

General criterion: max wavefront error < λ/4.
 - => For N-fold replication of aperture diameter D and at wavelength λ:

θ

- Example:
 - 2.5m diameter pupil
 - 800nm wavelength
 - 3-fold pupil replication
 - $-\theta < 5$ mas
- At angles smaller than θ the image quality should be 'good' (includes pointing error).

 $\frac{\pi}{4D(N-1)}$

Simulation

- Broken line is unreplicated image (diffraction limited)
- Solid line is replicated image
- Replicated image is modulated by unreplicated image, as expected

HERIO

Broadband

- Single pupil, 1000 nm (black)
- 3x Replicated pupil
 - 1000 nm (red)
 - 872 nm (green)
 - 760 nm (blue)

www.phy.hw.ac.uk/~phyhic

Analysis (2)

Input wave at angle α, d = pupil diameter
 A = amplitude constant

$$wave(x) = Ae^{2\pi(x-\sin(\alpha))/\lambda}$$

• Amplitude of imaged plane wave = T

$$T = A\operatorname{sinc}\left(2d\pi(x - \sin(\alpha))/\lambda\right)$$

• $PSF = |T|^2$

Analysis (3)

- Three replications:
 - single pupil convolved with 3 delta functions
 - Fourier(cosine) = 2 delta functions

- => sinc multiplied in Fourier domain (image) with 1 + 2cos(x)

$$T = A \left(1 + 2\cos\left(\frac{2d\pi x}{\lambda}\right) \right) \operatorname{sinc} \left(\frac{d\pi (x - \sin(\alpha))}{\lambda} \right)$$

- Note: Cos() is not dependent on angle

Two dimensions

• Square pupil (seamless replication) then: 2-D amplitude T

 $T = T_x T_y$

T for two replications 1 and 2
1 is on axis, 2 is adjacent

$$T = T_{x1}T_{y1} + T_{x2}T_{y2}$$

– errors imposed on 2

Errors

- Pupil 1: T_{1x} and T_{1y} are sinc functions
- Pupil 2 has errors in x (and y) direction:
 - shift s (and shear h):
 - piston p
 - tilt f (and tip g)
 - T_{2x} (and similar for T_{2y}):

$$Ae^{i2\pi\left(p+\left(\frac{x}{\lambda}\right)(d+s)\right)}\operatorname{sinc}\left(d\pi\left(\left(x-\sin\left(\alpha\right)\right)/\lambda-f\right)\right)$$

Evaluation

- 2-D analyses; horizontal crosssection
- If PSF(no error) PSF(with error) < 10^{-10}
 - example: shift = d 10^{-5} => 1 micron for 1 cm

pupil

– difference image =>

Examples

- Similar results below 10⁻¹⁰ for
 - shear = 10^{-5} d; piston = $10^{-6} \lambda$; tip = $10^{-5} \lambda/d$; tilt = $10^{-5} \lambda/d$; jitter = $10^{-6} \lambda/d$
- No apodisation or star stop applied.
- Is this peculiar to PR ? =>
 - Error sensitivity assessed this way is for single pupil of the same order of magnitude.

Software Simulations

- 2-D; horizontal crosssections shown
- Simulations of errors due to
 - shift, shear, piston, tip, tilt, jitter
 - agree with analysis within 10^{-14}
- Further simulations:
 - Rotation error, (de-)magnification error, random amplitude errors, random phase errors.
 - Extended sources

Simulation: Procedure

- Setup: two square pupils like in analysis
 - wave pupil errors FT grating FT⁻¹- pupil
 apodisation FT star stop sampling
 correction modulus² store
 this for each point source and wavelength
 and sum the results
 - Adapt for each wavelength: size of pupils, of apodisation, of star stop, of grating.
 - NB: maximum # pixels limited; sampling correction important; accuracy ~10⁻¹⁴

& Fields

ADAPTIVE OPTICS

PRedris

Example

• Rotation error, max = 21 degrees (magenta), and no error (black), diagonal crosssection.

- Similar results for (de-)magnification error.
- Random errors addressed later.

16 May 2005

Extended source

- Simulation using 500 point sources in broadband (8 wavelengths), source = $5\lambda/d$
- The cosine term marks the profile (?)
 - black: single pupil
 - red: 3 replications
 - equal normalisation
- Important when star > $\lambda/2d$ (sun at 20 pc with 9 m

telescope at 600 nm) 16 May 2005

Half-time

- So far:
 - Pupil Replication as such
 - Analysis, error behaviour

- To come:
 - Experiment
 - Coronagraph
 - Hyper telescope?

Experiment

- A first experiment to verify principle
- Interferometer beam:
 - 2 coherent beams
 - Monochromatic
 - Circular pupils with Gaussian beams
- Effect in one dimension only

PSF, pupils: 50% overlap simulation experiment

H:\Work\Education\Erwan\50% OVERLAPPING\PPSF.bm

H:\Work\Education\Erwan\50% OVERLAPPING\CPSF.bmp

28

HERIO

WAT

PP•\RC

Cross-sections

Blue: simulation, unreplicated

Red: simulation, replicated

Black: experimental

16 May 2005

PSFs, pupils: no overlap

simulation

experiment

HERIO₁

WAT

PPNRC

Cross-sections

Blue: simulation, unreplicated

Red: simulation, replicated

Black: experimental

Replication

- Use 1 beamsplitter and mirrors
- Equal:
 - # reflections in each arm
 - polarisation
 - optical path length
- Adjust last prism to vary replica separation
 => no shift error
- Can be cascaded
- Can be monolithic

Pupil Apodisation

- Used simple not optimised function for attenuation B:
 - Super Gaussian
 - x = off-axis angle

$$B(x) = e^{-\left(\frac{x}{c}\right)^8}$$

- c is adjusted to attenuate by 10⁻⁴ at pupil edge (both un- and replicated)
- Expect to
 - broaden the image core
 - reduce side-lobes

HERIO

PP•\R*C*

Simulation

- Unapodised
 - Black: unreplicated
 - Green: 3-fold replication
- Apodised
 - Red: unreplicated
 - Blue: 3-fold replication
- Efficiency:
 - 65% throughput
- Sidelobes suppressed

Off-axis effects

• Off-axis (planet) images will be distorted:

- Wavelength dependent => chromatic effects.
 - will these obstruct spectroscopy?
 - what other effects will this have - SNR?

16 May 2005

Simulation

- Planets at 7λ/d and 21λ/d, each 10⁻¹⁰ brightness of host star
- 3 colours shown 760nm (blue), 872nm(green), 1000nm (red&black)

Maves Fields ADAPTIVE OPTICS SPECIAL PRedris

Sensitivity: amplitude

- At this accuracy, amplitude errors matter
- Simulations suggest that better than 0.1% is required to image exo-earths
- Simulation:
 - random amplitude error 10⁻³ max.
 - pixel size ~ 1 cm

Pixel size

 10-3 random amplitude errors, with 25, 251, 2501 pupil pixels (100, 10, 1 mm/pixel)

16 May 2005

Sensitivity: phase

- Higher sensitivity to phase errors
- Simulation suggests that better than $\lambda/10000$ is needed to image exo-earths
- Pixel size 1 cm

Random phase $10^{-3}\lambda$

Hyper Telescope?

- Pupil Replication =/≅/≠ Hyper Telescope?
 - Assessment of the hyper telescope principle
 - using analysis like before
 - simplified situation
 - characterisation only
 - adding to discussion...

Hyper Telescope

• 1-D, 3 pupils with equal spacing h between the telescopes and joined:

 $T = A \Big(1 + 2\cos\Big(2d\pi\big(x + \big((h/d) - 1\big)\sin\big(\alpha\big)\big)/\lambda\Big) \Big) \operatorname{sinc}\Big(d\pi\big(x - \sin\big(\alpha\big)\big)/\lambda\Big)$

- => similar to pupil replication but:
- $=> \cos()$ now dependent on angle
- on axis (star light suppression) equal to PR

HT Analysis

3

• PSF: $\alpha = 0.3 \lambda/d$ of single pupil, h = 2d (3d centre to centre)

0

off-axis angle $(\lambda max/d)$

www.phy.hw.ac.uk/~phyhic

-6

-3

16 May 2005

3

HT Analysis

- Same as last slide but:
- PSF: $\alpha = 1.6 \lambda/d$ of single pupil,

16 May 2005

Analysis

• HT-PR:

the hyper telescope is replicated 3 times:

$$T_{HT-PR} = \frac{T_{HT}}{3} \left(1 + 2\cos\left(6\pi d\left(x - \sin\left(\alpha\right)\right)/\lambda\right) \right)$$

• PR-HT:

the 3 replications are made in each of the hyper telescopes:

$$T_{PR-HT} = \frac{T_{HT}}{3} \left(1 + 2\cos\left(6\pi d\left(x + \left(\left(h/d\right) - 1\right)\sin\left(\alpha\right)\right)/\lambda \right) \right)$$

Evaluation?

- Based on this analysis only:
- Options:
 - pupil replication
 - hypertelescope
 - combined
 - other...
- Criteria:
 - on-axis behaviour: star suppression
 - off-axis behaviour: planet detection

Information

- Pupil Replication for Exo-Planet Imaging;
 A. H. Greenaway, F. H. P. Spaan and V.
 Mourai, The Astrophysical Journal Letters,
 Vol. 618-2, pp L165-L168, 10 January 2005.
- Analysis of Pupil Replication (to be published).
- www.phy.hw.ac.uk/~phyhic

