Pupil Replication

Frank Spaan Alan Greenaway
Erwan Prot Vincent Mourai

PREDRIS

- Pupil Replication for Extreme Dynamic Range Imaging Spectroscopy
- Start: 1 April 2005
- Two years, funded by PPARC
- Publication: Pupil Replication for ExoPlanet Imaging; ApJL, 10 January 2005 (referenced in Nature).
- This presentation: includes new unpublished results.

Overview

PRedris

- Introduction to Pupil Replication
- Characterization and analysis
- Error Assessment
- Experimental proof of principle
- Simulation of a Coronagraph
- Comparison with Hyper Telescope principle

Context

- Exoplanet indirect detection since 1995
- ESA Cosmic Vision 2020 (April 2005):
- fundamental physics
- cosmology
- solar system
- planetary formation, life, exoplanets
- => direct detection of exoplanets
- => proposals due early 2007

Numbers

- Dynamic range starflux / planetflux:
- 10^{10} (visual, reflected), 10^{6} (infrared, thermal)
- A planet at 1 AU around a star at 20 pc seen with 3 m telescope
- at $36 \lambda / \mathrm{d}$ at 600 nm (stardisk $=>0.2 \lambda / \mathrm{d}$)
- at $2 \lambda / d$ at 10 micron
- flux: one hour,V-band, efficiency 50% =>
- ~500 photons (planet around 0 magnitude star)
- ~. 05 photons (planet around 10 magnitude star)

Star flux problem

- Flux from host star dominates exoplanet:
- Techniques to suppress scattered host flux:
- coronography
- pupil apodisation
- interferometry

diffraction limited PSF, x -axis in λ / d

Inner Working Angle

- Inner working angle (IWA): the minimum angular distance from the star at which a planet can be detected.
- All techniques need image-plane masks
- mask size is typically several λ / D
- side-lobe suppression often increases star image
- increasing IWA makes earth-like detection harder
- => decrease size of star image => pupil replication

Pupil Replication

PRedris

Expected Results

- Consider 3-fold replication in 1-d
- Axial pupil wavefront is $3 x$ wider and $3 x$ fainter
- Image of unresolved axial star is 3 x narrower and $3 x$ brighter
- Sidelobes are $3 x$ fainter
- Image stop to remove star flux can be smaller

Expected Limits

- Violation of homothetic mapping
- position and orientation of the replicated images is not an exact scaled copy of the unreplicated image
- => Non-isoplanatic imaging
- PSF dependent on the viewing direction.
- => Requirement:
- Maximum angular diameter of star + telescope pointing error < some limit: θ

PRedris

Example

- General criterion: max wavefront error $<\lambda / 4$.
- => For N-fold replication of aperture diameter D and at wavelength λ :
- Example:
- 2.5 m diameter pupil
- 800 nm wavelength

$$
\theta<\frac{\lambda}{4 D(N-1)}
$$

- 3-fold pupil replication
$-\theta<5$ mas
- At angles smaller than θ the image quality should be 'good' (includes pointing error).

Simulation

- Broken line is unreplicated image (diffraction limited)
- Solid line is replicated image
- Replicated image is modulated by unreplicated image, as expected

Broadband

- Single pupil, 1000 nm (black)
- 3x Replicated pupil
- 1000 nm (red)
- 872 nm (green)
- 760 nm (blue)

Analysis (1)

PRedris
in 1 dimension, plane wave on axis, hard edged pupil:
wave + pupil:
 imaged:

$$
\sin (x) / x=\operatorname{sinc}(x)
$$

$\square=\square \quad * \uparrow \uparrow \uparrow \overline{\mathrm{FT}}\rangle \operatorname{sinc}(\mathrm{x})(1+2 \cos (\mathrm{x}))$

Analysis (2)

- Input wave at angle $\alpha, \mathrm{d}=$ pupil diameter A = amplitude constant

$$
\operatorname{wave}(x)=A e^{2 \pi(x-\sin (\alpha)) / \lambda}
$$

- Amplitude of imaged plane wave $=\mathrm{T}$

$$
T=A \operatorname{sinc}(2 d \pi(x-\sin (\alpha)) / \lambda)
$$

- $\operatorname{PSF}=|T|^{2}$

Analysis (3)

- Three replications:
- single pupil convolved with 3 delta functions
- Fourier $($ cosine $)=2$ delta functions
$-=>$ sinc multiplied in Fourier domain (image) with $1+2 \cos (\mathrm{x})$

$$
T=A(1+2 \cos (2 d \pi x / \lambda)) \operatorname{sinc}(d \pi(x-\sin (\alpha)) / \lambda)
$$

- Note: Cos() is not dependent on angle

Two dimensions

- Square pupil (seamless replication) then: 2-D amplitude T

$$
T=T_{x} T_{y}
$$

- T for two replications 1 and 2
-1 is on axis, 2 is adjacent

$$
T=T_{x 1} T_{y 1}+T_{x 2} T_{y 2}
$$

- errors imposed on 2

Errors

- Pupil 1: $\mathrm{T}_{1 \mathrm{x}}$ and $\mathrm{T}_{1 \mathrm{y}}$ are sinc functions
- Pupil 2 has errors in x (and y) direction:
- shift s (and shear h):
- piston p
- tilt f (and tip g)
$-\mathrm{T}_{2 \mathrm{x}}\left(\right.$ and similar for $\left.\mathrm{T}_{2 \mathrm{y}}\right)$:

$$
A e^{i 2 \pi(p+(x / \lambda)(d+s))} \operatorname{sinc}(d \pi((x-\sin (\alpha)) / \lambda-f))
$$

Evaluation

- 2-D analyses; horizontal crosssection
- If PSF(no error) - PSF(with error) < 10^{-10}
- example: shift $=\mathrm{d} 10^{-5} \Rightarrow 1$ micron for 1 cm pupil
- difference image =>

Examples

PRedris

- Similar results below 10^{-10} for
- shear $=10^{-5} \mathrm{~d}$; piston $=10^{-6} \lambda$; tip $=10^{-5} \lambda / \mathrm{d}$; tilt $=10^{-5} \lambda / \mathrm{d}$; jitter $=10^{-6} \lambda / \mathrm{d}$
- No apodisation or star stop applied.
- Is this peculiar to PR ? =>
- Error sensitivity assessed this way is for single pupil of the same order of magnitude.

Software Simulations

- 2-D; horizontal crosssections shown
- Simulations of errors due to
- shift, shear, piston, tip, tilt, jitter
- agree with analysis within 10^{-14}
- Further simulations:
- Rotation error, (de-)magnification error, random amplitude errors, random phase errors.
- Extended sources

Simulation: Procedure

- Setup: two square pupils like in analysis
- wave - pupil - errors - FT - grating - FT^{-1} - pupil
- apodisation - FT - star stop - sampling correction - modulus ${ }^{2}$ - store
$=>$ this for each point source and wavelength and sum the results
- Adapt for each wavelength: size of pupils, of apodisation, of star stop, of grating.
- NB: maximum \# pixels limited; sampling correction important; accuracy $\sim 10^{-14}$

Example

PRedris

- Rotation error, max $=21$ degrees (magenta), and no error (black), diagonal crosssection.

- Similar results for (de-)magnification error.
- Random errors addressed later.

Extended source

- Simulation using 500 point sources in broadband (8 wavelengths), source $=5 \lambda / \mathrm{d}$
- The cosine term marks the profile (?)
- black: single pupil
- red: 3 replications
- equal normalisation
- Important when star $>\lambda / 2 \mathrm{~d}$ (sun at 20 pc with 9 m telescope at 600 nm)

Half-time

- So far:
- Pupil Replication as such
- Analysis, error behaviour
- To come:
- Experiment
- Coronagraph
- Hyper telescope?

Experiment

- A first experiment to verify principle
- Interferometer beam:
- 2 coherent beams
- Monochromatic
- Circular pupils with Gaussian beams
- Effect in one dimension only

PSF，pupils：50\％overlap simulation experiment

Cross-sections

Blue: simulation, unreplicated

Red: simulation, replicated

Black: experimental

PSFs，pupils：no overlap

PRedris

simulation

Abstract

experiment

ADAPTIVE OPTICS PRedris

Cross-sections

Blue: simulation, unreplicated

Red: simulation, replicated

Black: experimental

Replication

－Use 1 beamsplitter and mirrors
－Equal：
－\＃reflections in each arm
－polarisation
－optical path length
－Adjust last prism to vary replica separation
＝＞no shift error
－Can be cascaded
－Can be monolithic

Pupil Apodisation

- Used simple not optimised function for attenuation B:
- Super Gaussian

$$
B(x)=e^{-(x / c)^{8}}
$$

- $\mathrm{x}=$ off-axis angle
- c is adjusted to attenuate by 10^{-4} at pupil edge (both un- and replicated)
- Expect to
- broaden the image core
- reduce side-lobes

Simulation

- Unapodised
- Black: unreplicated
- Green: 3-fold replication
- Apodised
- Red: unreplicated
- Blue: 3-fold replication
- Efficiency:
- 65\% throughput
- Sidelobes suppressed

Units: λ / D

Off-axis effects

- Off-axis (planet) images will be distorted:

50 mas

- Wavelength dependent \Rightarrow chromatic effects.
$>$ will these obstruct spectroscopy?
$>$ what other effects will this have - SNR?
150 mas

Simulation

- Planets at $7 \lambda / \mathrm{d}$ and $21 \lambda / \mathrm{d}$, each 10^{-10} brightness of host star
- 3 colours shown 760 nm (blue), 872nm(green), 1000 nm (red\&black)

Units: λ / d (at 1000 nm)

PRedris

Star Stop added

- $5 \lambda /$ d half-width solid star stop in image plane
- second pupil added, no Lyot stop
- Unreplicated: solid red, replicated: solid blue
- right: three wavelengths (coloured)

Coronagraph

- Broadband (V-band in 8 wavelengths)

Sensitivity: amplitude

- At this accuracy, amplitude errors matter
- Simulations suggest that better than 0.1% is required to image exo-earths
- Simulation:
- random amplitude error 10^{-3} max.
- pixel size ~ 1 cm

Pixel size

- 10-3 random amplitude errors, with $25,251,2501$ pupil pixels (100, 10, 1 mm/pixel)

Log Intensity (normalised)

Sensitivity: phase

- Higher sensitivity to phase errors
- Simulation suggests that better than $\lambda / 10000$ is needed to image exo-earths
- Pixel size 1 cm

Random phase error max.

16 May 2005
$10^{-3} \lambda$

www.phy.hw.ac.uk/~phyhic
$10^{-5} \lambda$

41

Hyper Telescope?

- Pupil Replication $=/ \cong \neq \neq$ Hyper Telescope?
- Assessment of the hyper telescope principle
- using analysis like before
- simplified situation
- characterisation only
- adding to discussion...

Overview

On axis: Pupil Replication = Hyper Telescope

Off axis:
pupil replication
hyper telescope

Hyper Telescope

- 1-D, 3 pupils with equal spacing h between the telescopes and joined:

$$
T=A(1+2 \cos (2 d \pi(x+((h / d)-1) \sin (\alpha)) / \lambda)) \operatorname{sinc}(d \pi(x-\sin (\alpha)) / \lambda)
$$

- => similar to pupil replication but:
- => $\cos ($) now dependent on angle
- on axis (star light suppression) equal to PR

HT Analysis

- PSF: $\alpha=0.3 \lambda / \mathrm{d}$ of single pupil, $\mathrm{h}=2 \mathrm{~d}$ (3 d centre to centre)

Pupil Replication (PR)

Hyper Telescope (HT)

HT Analysis

PRedris

- Same as last slide but:
- PSF: $\alpha=1.6 \lambda / \mathrm{d}$ of single pupil,

Pupil Replication (PR) Hyper Telescope (HT)

Combine?

HT-PR

PR-HT

Analysis

- HT-PR:
the hyper telescope is replicated 3 times:

$$
T_{H T-P R}=\frac{T_{H T}}{3}(1+2 \cos (6 \pi d(x-\sin (\alpha)) / \lambda))
$$

- PR-HT:
the 3 replications are made in each of the hyper telescopes:

$$
T_{P R-H T}=\frac{T_{H T}}{3}(1+2 \cos (6 \pi d(x+((h / d)-1) \sin (\alpha)) / \lambda))
$$

HT-PR

Or PR-HT

PRedris

- 3×3 pupils $\alpha=0.3 \lambda / d$

PPDRC

Evaluation?

- Based on this analysis only:
- Options:
- pupil replication
- hypertelescope
- combined
- other...
- Criteria:
- on-axis behaviour: star suppression
- off-axis behaviour: planet detection

Information

- Pupil Replication for Exo-Planet Imaging; A. H. Greenaway, F. H. P. Spaan and V. Mourai, The Astrophysical Journal Letters, Vol. 618-2, pp L165-L168, 10 January 2005.
- Analysis of Pupil Replication (to be published).
- www.phy.hw.ac.uk/~phyhic

